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Abstract 
 

In this study, the point collocation method was implemented to solve the boundary value problem (BVP) of simply supported 

Euler-Bernoulli beams resting on Winkler foundation for uniformly distributed load. Mathematically, the BVP solved was a 

fourth order non homogeneous ordinary differential equation with constant parameters for the case of prismatic cross-sections 
considered. A two term deflection function was used to determine the residual function. Dirac delta functions at the collocation 

points were used in a weighted residual statement of the problem to obtain the collocation equations which were solved to obtain 

the unknown parameters. The results obtained were reasonably in agreement with the solutions obtained in literature using 3 

term Ritz solutions. The difference between the 2 term collocation and the 3 term Ritz solutions were insignificant at less than 

5.02% considering the obvious simplicity offered by the point collocation method. 

 

Keywords: Point collocation method, Euler-Bernoulli beam, Winkler foundation, Residual (error) function, Dirac delta function, 

Boundary value problem. 

 

1. Introduction 

 

 The concepts of beams resting on elastic foundations have 
been extensively applied by geotechnical, road pavement and 

railway engineers in the analysis and design of railroads, road 

pavements and foundations. It is also used in the analysis and 

design of buried gas pipeline systems [1-4]. The application 

entailed the formulation of theories of beams as well as 

theories for the elastic foundation. Several theories were 

proposed for beams. They are Bernoulli-Euler beam theory 

[4, 5], Timoshenko beam theory, Mindlin beam theory, 

refined shear deformation beam theory etc. 

 

 The Bernoulli-Euler beam theory which neglects the effect 

of shear deformation on the flexural behaviour of thin 
(slender) beams has been adopted as the beam model in this 

work. Several theories/models have also been proposed for 

the elastic foundation. They include: Winkler [6] model, 

Filonenko-Borodich model, Hetenyi model, Pasternak [7] 

model, Vlasov and Leontiev model, Kerr [8] model. 

 

 The Winkler model which is the simplest model assumes 

that the reaction forces of the soil on the beam are directly 

proportional at every point on the beam to the deflection of 

the beam at that point. The physical representation of the 

Winkler model is a bed of continuous closely spaced linear 

elastic springs which define the vertical deformation 

characteristics of the foundation bed. The constant of 
proportionality of the springs is defined as the modulus of 

subgrade reaction, k. The Winkler one parameter model 

representation of the foundation, though simple, does not 

accurately represent the characteristics of many practical 

foundations. A major defect of the Winkler foundation model 

is the displacement discontinuity that appears between the 

loaded and unloaded parts of the foundation surface, which 

violates the elasticity behaviour of the soil. 

 

 Other researchers have improved on the Winkler 

idealization by introducing shear interaction between the 

Winkler spring elements to take care of the displacement 
discontinuity in the Winkler model. Those models are 

generally called two parameter or three parameter foundation 

models. 

 

 Despite the inadequacies of the Winkler foundation model, 

it has found extensive application in soil structure interaction 

analysis due to its obvious simplicity. This study focuses on 

Euler-Bernoulli beam resting on Winkler foundation. The 

solution is a statically indeterminate problem of mechanics. 

Several techniques have been employed to solve the fourth 

order equation governing the Euler-Bernoulli beam on 
Winkler foundation problem. The solution methods are 

broadly classified as analytical and numerical solutions. The 

analytical solutions are [9]: integral transform methods, 
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product method, and eigen function expansion method. Not 

all problems of Euler-Bernoulli beam on Winkler foundation 

can be solved by analytical methods since their solutions are 

very complicated. 

 
 Numerical methods for solving the Euler-Bernoulli beam 

on Winkler foundation problem include: finite element 

methods [10, 11], finite difference methods, Galerkin 

methods, Spline collocation methods [12, 13], isogeometric 

collocation method [5], interpolation methods [14] and 

differential transform methods [3]. 

 

2. Research aim and objectives 
 

 The general aim of this work is to use the point collocation 

method to solve the flexural problem of Euler-Bernoulli beam 

on Winkler foundation for the case of simply supported ends 
at x = 0, x = l, and uniformly distributed transverse load. The 

specific objectives are: 

 

1) To find suitable approximating deflection functions 

for the problem in terms of deflection shape 

functions and unknown displacement parameters. 

2) To find the residual function for the Euler-Bernoulli 

beam on Winkler foundation 

3) To obtain a solution to the Euler-Bernoulli beam on 

Winkler foundation problem at discrete points on the 

beam called the collocation points. 
4) To find the deflection and bending moment and the 

maximum values of the deflection and bending 

moment for given values of .k
EI

  

5) To compare the solutions obtained for maximum 

deflection and maximum bending moment with the 

solutions obtained using Ritz variational method. 

 

3. Methodology 
 

 The governing ordinary differential equation (ODE) for 

Euler-Bernoulli beam on Winkler foundation is the fourth 

order equation: 

 
4

4

( )
( ) ( )

d w x
EI kw x q x

dx
                (1) 

 

 where E is the Young’s modulus of elasticity of the beam 

material, I is the moment of inertia, k is the modulus of soil 
reaction or the Winkler modulus, q(x) is the applied 

transverse distributed load on the beam and w(x) is the 

deflection of the beam. x is the longitudinal axis of the beam. 

Let 

 

44
k

EI
             (2) 

 
 Then the governing ODE becomes: 

4
4

4
4

d w q
w

EIdx
                     (3) 

 

 The work considers an Euler-Bernoulli beam of prismatic 

cross-section with simply supported ends at x = 0, and x = l, 
where l is the length of the beam. 

 

 The boundary conditions become: 

 

( 0) ( ) 0w x w x l                (4) 

 And  

( 0) ( ) 0M x M x l                (5) 

 

 Where M  is the bending moment distribution. 

  

 Using the bending moment-displacement relations for 

Euler-Bernoulli beams the boundary conditions Equation (5) 

could be expressed as: 

 

( 0) ( ) 0w x w x l                 (6) 

  

 Where the primes denote differentiation with respect to the 

x-coordinate.  

 
 A suitable displacement coordinate function that satisfies 

the boundary conditions of simple supports at x = 0, and x = l 

is: 

1 2

3
( ) sin sin

x x
w x c c

l l

 
             (7) 

  

 where sin x
l

  and 3sin x
l

  are the displacement shape 

(basis) functions, and c1 and c2 are the unknown displacement 

parameters of the basis functions. 

 

 The residual function R(x) is obtained as: 

 
4 4

4
1 2 14

81 3
( ) sin sin 4 sin

x x x
R x c c c

l l l ll

     
    

 
 

   
4

2

3
4 sin

x q
c

l EI


                (8) 

  
 Simplifying, 

 
4 4

4 4
1 24 4

81 3
( ) 4 sin 4 sin

x x q
R x c c

l l EIl l

      
         
   

      (9) 

 

4. Results 

 

 The collocation points are chosen at x = l/4 and x = l/2, and 

the collocation equations are obtained using the Dirac delta 

functions at collocation points as the weighting functions, in a 

weighted residual integral statement of the problem to obtain 

the following two equations: 
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0

( ) ( / 4) 0

l

R x x l dx                (10) 

0

( ) ( / 2) 0

l

R x x l dx                    (11) 

  

 The collocation equations become: 

  

 For x = l/4, 

 

 
4 4

4 4
1 24 4

2 81 2
4 4 0

4 2 2

qlR x c c
EIl l

    
           

   
  

                       … (12) 

 

 And for x = l/2, 

 

 
4 4

4 4
1 24 4

81
4 4 ( 1) 0

2

qlR x c c
EIl l

    
            

   
  

                       … (13) 
 

 Alternatively, 

 
4 4

4 4
1 24 4

81
4 4

q
c c

EIl l

    
        

   
        (14) 

 
4 4

4 4
1 24 4

81 2
4 4

2

q
c c

EIl l

    
        

   
      (15) 

 

Solving,  

 
4

4
14

2 2 2
2 4 1

2 2

q q
c

EI EIl

    
         

     
    (16) 

 

1 4
4

4

2 2 1

2 2
4

.
q

c
EI

l

 
  

   
  

 

           (17) 

 

 Similarly, solving for c2 in Equations (14) and (15), we 

obtain: 

 
4

4
24

81 2 2 2 2
2 4 1

2 2 2

q q q q
c

EI EI EI EIl

    
            

     
  

                       … (18) 
 

2 4
4

4

2 2 1

812 2
4

q
c

EI

l

 
  

   
  

 

          (19) 

 

The deflection is then found as: 

 

4
4

4

2 2 1
( ) sin

2 2
4

q x
w x

EI l

l

  
  

   
  

 

  

  
4

4

4

2 2 1 3
sin

812 2
4

q x

EI l

l

  
  

   
  

 

      (20) 

 The center deflection wc, is found from:  

 

  1 2,
2

lw x c c    as 

  

4 4
4 4

4 4

2 2 1 2 2 1

812 2 2 2
4 4

c

q q
w

EI EI

l l

    
    

       
      

   

  

                       … (21) 

 

4 4
4 4

4 4

2 2 2 2

812 2
4 4

c

q
w

EI

l l

  
  

             
     

     (22) 

 

 The bending moment distribution M(x) is found from the 

bending moment-deflection relation: 

 

( ) ( )M x EI w x                   (23) 

 

Thus, 

 
2 2

1 22 2

9 3
( ) sin sin

x x
M x EI c c

l ll l

    
  

 
      (24) 

 
2

1 22

3
( ) sin 9 sin

x x
M x EI c c

l ll

   
  

 
        (25) 

 
2

2 4
4

4

2 2 1
( ) sin

2 2
4

q x
M x

ll

l

   
  

       
  

     

  
4

4

4

9(2 2 ) 1 3
sin

812 2
4

x

l

l

 
 

     
  

      (26) 

  
 At the center, x = l/2, the bending moment at the center, 

Mc, becomes: 

 

 2c
lM M x                   (27) 

 
2

2 4
4

4

2 2 1
sin

22 2
4

c

q
M

l

l

   
  

       
  
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4

4

4

9(2 2) 1 3
sin

2812 2
4

l

 
 

     
  

       (28) 

 
2

4 42
4 4

4 4

2 2 9(2 2 )

812 2
4 4

c

q
M

l

l l

   
  

             
     

     (29) 

 

 The shear force distribution Q(x) is found from the shear 

force-deflection relation as: 

 
3 3

1 23 3

27 3
( ) ( ) cos cos

x x
Q x EIw x EI c c

l ll l

    
    

 
  

                       … (30) 

 
3

1 23

3
( ) cos 27 cos

EI x x
Q x c c

l ll

   
  

 
       (31) 

 
3

3 4
4

4

2 2 1
( ) cos

2 2
4

EI q x
Q x

EI ll

l

    
  

       
  

     

  
4

4

4

27 2 2 1 3
cos

812 2
4

q x

EI l

l

   
   

       
  

    (32) 

 
3

3 4
4

4

2 2 1
( ) cos

2 2
4

q x
Q x

ll

l

   
  

       
  

     

  
4

4

4

27(2 2 ) 1 3
cos

812 2
4

x

l

l

 
 

     
  

      (33) 

 

 For x = 0, 

 
3

4 43
4 4

4 4

2 2 27(2 2 )
(0)

812 2
4 4

q
Q

l

l l

   
  

             
     

     (34) 

 

( ) (0)Q x l Q                (35) 

 

 

Numerical solutions 

 

For 
4

4,
kl

EI
                     (36) 

 

4

4

4
4

k

EI l
                     (37) 

 

4 4

4 4 4 4

2 2 2 2

4 81 42 2
c

q
w

EI

l l l l

  
  

    
 

        (38) 

4

0.011877055c

ql
w

EI
                (39) 

2

4 42

4 4 4 4

2 2 9(2 2 )

4 81 42 2
c

q
M

l

l l l l

   
  

    
 

         (40) 

 
20.11515cM ql                  (41) 

 
4

4 43

4 4 4 4

2 2 27(2 2 )
(0)

4 81 42 2

q
Q

l

l l l l

   
  

    
 

       (42) 

 
4

4 43

4 4

2 2 27(2 2)
(0)

4 81 42 2

q
Q

l

l l

   
  

    
 
 

       (43) 

 

(0) 1.22848936 ( )Q ql Q l               (44) 

 

For 
4

10,
kl

EI
                    (45) 

 

4

4

10
4 ,

k

EI l
                     (46) 

 

4 4

4 4 4 4

2 2 2 2

10 81 102 2
c

q
w

EI

l l l l

  
  

    
 

        (47) 

 
4

4 4

2 2 2 2

10 81 102 2
c

ql
w

EI

  
  

    
         (48) 

 
4

0.01121219c

ql
w

EI
                 (49) 

 
2

4 42

4 4

2 2 9(2 2 )

10 81 102 2
c

q
M

l

l l

   
  

    
 
 

         (50) 

 

                   (51) 

 

 The 3-term Ritz solution for center deflection wc is: 
4

0.011804482c

ql
w

EI
            (52) 
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 While the 3-term Ritz solution for center bending moment 

is: 

 
20.113255cM ql               (53) 

 
4

4 43

4 4 4 4

2 2 27(2 2)
(0)

10 81 102 2

q
Q

l

l l l l

   
  

    
 

       (54) 

                                (55) 

 

5. Discussion 
 

 In this study, the point collocation method was successfully 

implemented to solve the boundary value problem (BVP) of a 

prismatic Euler-Bernoulli beam resting on Winkler 

foundation, for the case of uniformly distributed transverse 

load and simply supported edges. The BVP was represented 
by a fourth order ordinary differential equation given by 

Equation (1), and for prismatic cross-section and 

homogeneous foundation, the equation has constant 

coefficients. A suitable deflection function with two unknown 

deflection parameters, c1, and c2, that satisfies the simply 

supported boundary conditions at x = 0, and x = l was 

constructed from the deflection shape function of simply 

supported beams, as Equation (7). The residual (error) 

function was found in terms of the two unknown deflection 

parameters, as Equation (9). The collocation equations were 

written with the Dirac delta functions at the two collocation 

points (x = l/4 and x = l/2) used as the weighting functions. 
This yielded the two collocation Equations (12) and (13) in 

terms of the unknown deflection parameters. The collocation 

equations were expressed in matrix format as Equations (14) 

and (15). The collocation equations were solved using the 

techniques of linear algebra to obtain the unknown deflection 

parameters as Equation (17) and (19). The deflection was 

thus completely determined as Equation (20). The deflection 

at the center of the Euler-Bernoulli beam on Winkler 

foundation was found in general as Equation (22). The 

bending moment-deflection relation for Euler-Bernoulli 

beams theory (Equation (23)) was used to obtain the bending 
moment distribution along the longitudinal axis of the beam 

as Equation (26). The bending moment at the center was 

found as Equation (29). The shear force distribution along the 

longitudinal axis of the beam was obtained as Equation (33). 

Maximum values of shear force were found to occur at the 

ends (x = 0, x = l) of the beam and were obtained as 

Equations (34) and (35). Numerical solutions were obtained 

for the general solutions presented for values of the 

dimensionless Winkler parameter K, 
4kl

K
EI

 
 

 
 given by K 

= 4, and K = 10, where 4 44 .K l   For K = 4, the center 

deflection was obtained as Equation (39), while the center 

bending moment was obtained as Equation (41). The shear 

force at the beam end was obtained as Equation (44). For K = 

10, the center deflection was obtained as Equation (49); the 

center bending moment was found as Equation (51). The 

shear force at the end was obtained as Equation (55). A 

comparison of the values of the center deflection for K = 4, 

and K = 10, shows that the center deflection reduced with 

increase in the Winkler modulus k. Similarly, comparison of 
the values of the center bending moments for K = 4 and K = 

10, shows that the center bending moment reduced with 

increase in the Winkler modulus, k. The shear force at the 

ends increased with increase in the Winkler modulus. A 

comparison of the two term point collocation solution for 

center deflection with the three term Ritz solution showed a 

relative difference of  –5.02% for the case of the non-

dimensional Winkler modulus K = 10. The two term point 

collocation solution for center bending moments showed a 

relative difference of –4.12% when compared with the three 

term Ritz solution for center bending moment for the case of 

dimensionless Winkler modulus K = 10. Detailed calculation 
steps for the solution of deflection, shear force and bending 

moment at the centre and the ends (x = 0, x = l) for the 

various values of the dimensionless Winkler parameter are 

presented in Appendices 1, 2, 3, 4 and 5. 

 

6. Conclusions 
 

 From the study, the following conclusions are made: 

 

1. The point collocation method for solving BVP has 

been successfully applied to the flexural problem of 
simply supported Euler-Bernoulli beam resting on 

Winkler foundation. 

2. The point collocation method relies on finding 

deflection function that satisfies the boundary 

conditions of deformation at the supports and the 

force boundary conditions (natural and essential 

boundary conditions). 

3. The collocation equations are setup from the residual 

(error) functions by using the Dirac delta functions 

at the defined collocation points as the weighting 

functions in a weighted variational statement of 

problem. 
4. The unknown deflection parameters are found using 

linear algebra techniques. 

5. Maximum deflections and maximum bending 

moments occur at the center of the beam’s 

longitudinal axis; and this is expected from 

considerations of symmetry of the beam and 

symmetry of loading. 

6. Maximum shear force occurs at the simple supports 

(at x = 0, x = l). 

7. The deflection at the center of the beam’s 

longitudinal axis reduces as the Winkler modulus, k 
increases. 

8. The bending moment at the center of the beam’s 

longitudinal axis reduces as the Winkler modulus, k 

increases. 

9. The shear force at the ends of the beam increase with 

increase in the Winkler modulus, k. 
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Nomenclature 
 

E   Young’s modulus of elasticity 

I   moment of inertia 
k   modulus of soil reaction 

q(x)  applied transverse load distribution on the beam 

x   longitudinal axis of the beam 

w(x)  deflection of the beam 

l   length of the beam 

R(x)  residual (error) function 

c1, c2 constants of integration 

   Dirac delta function 

M(x) bending moment distribution 

Q(x)  shear force distribution 

K   dimensionless Winkler parameter 

44  parameter relating beam flexural rigidity and the   

  Winkler modulus 

( )
dw

w x
dx

   first derivative of w(x) with respect to x. 

2

2

( )
( )

d w x
w x

dx
   second derivative of w(x) with respect to x. 

 

Appendix 1 
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2 2 2 2
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c
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 
 

4 0.0336676 0.000074205
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Appendix 2 
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 
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20.0336676 0.000667845
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Appendix 3 
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2 2
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Appendix 4 
 

2

4 42

4 4

2 2 9(2 2 )

10 81 102 2
c

q
M

l

l l

   
  

    
 
 

  

2 2

4 4

2 2 9(2 2)

10 81 102 2
c

q l
M

   
  

    
  

20.108589938cM ql        

      
 

Appendix 5 
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